Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy
نویسندگان
چکیده
Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.
منابع مشابه
Nanoparticle translocation through a lipid bilayer tuned by surface chemistry.
An enhanced understanding about the interactions between nanomaterials and cell membranes may have important implications for biomedical applications. In this work, coarse-grained molecular dynamics simulations of gold nanoparticles interacting with lipid bilayers were performed to evaluate the effect of hydrophobicity, charge density and ligand length on lipid bilayers. The simulations accompl...
متن کاملSurface charge effects on the 2D conformation of supercoiled DNA.
We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar tre...
متن کاملSurface-Dependent Differences in the Adsorption of Pancreatic and Microbial Ribonucleases Visualized by Atomic Force Microscopy
A comparative study of the physical adsorption of RNAse A and RNAse Bacillus pumilis onto a negatively charged surface of mica, a hydrophobic surface of pyrolytic graphite and a surface of lipid layers of dipalmitoylphosphatidylcholine (DPPC) was performed by atomic force microscopy. It was found that microbial RNAse, unlike RNAse A, 1) is adsorbed onto the negatively charged surface of mica in...
متن کاملBehenic Acid Monolayer and Bilayer Assemblies- A Study of Concanavalin A (Con A) Adsorption and its Interaction with Dextran Using Surface Plasmon Resonance Spectroscopy and Microscopy
Deposition of behenic acid (B.A) mono and bilayers onto gold coated surfaces was performed by Langmuir-Blodget dip-casting technique. Surface Plasmon resonance (SPR) and ellipsometry methods were employed for investigation of the monolayer and bilayer films. The adsorption of the biologically important molecule Concanavalin A (Con A) from bulk solution to these monolayers and bilayers as we...
متن کاملRelative surface charge density mapping with the atomic force microscope.
An experimental approach for producing relative charge density maps of biological surfaces using the atomic force microscope is presented. This approach, called D minus D (D-D) mapping, uses isoforce surfaces collected at different salt concentrations to remove topography and isolate electrostatic contributions to the tip-sample interaction force. This approach is quantitative for surface poten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016